Problem 1

•	A	В	С	D _
=				
1	pole	44		
2	man	11/2	5.5	
3	man's walking rate	8		
4	man's shadow	у		
5	pole's shadow	x+y		
6	distance from pole	30		
7		unnecessary info		
<				> >
$\overline{A1}$	pole			

A street light is mounted at the top of a 44 ft tall pole. A man 5.5 ft tall walks away from the pole with a speed of 8 ft/sec along a straight path.

3. How fast is the LENGTH of HIS shadow changing when he is 30 ft from the pole?

$$\frac{44}{5.5} = \frac{x+y}{y}$$

$$\frac{44}{4} = \frac{5.5}{x} = \frac{(x+y)}{44}$$

$$44 = \frac{5.5}{x} = \frac{5.5}{x}$$

$$44 = \frac{5.5}{x} = \frac{5.5}{x}$$

$$44 = \frac{5.5}{x} = \frac{5.5}{x}$$

$$38.5 = \frac{5.5}{x}$$

$$y = \frac{5.5}{38.5} x \rightarrow y = \frac{1}{7} x$$
 $x = \frac{38.5}{5.5} y \rightarrow x = 7 y$

 $L=x+y = length \ of \ pole's \ shadow$

 $y = length \ of \ man's \ shadow$

There are a variety of routes to the answer for the question of how fast is the tip of the shadow moving and how fast the man's shadow is changing its length.

I will show two of these methods

A street light is mounted at the top of a 44 ft tall pole. A man 5.5 ft tall walks away from the pole with a speed of man_rate ft/sec along a straight path.

3. How fast is the LENGTH of HIS shadow changing when he is 30 ft from the pole?

$$\frac{44}{5.5} = \frac{x+y}{y} \qquad 44 \quad y = \underline{5.5} \quad (x+y) \\
44 \quad y = \underline{5.5} \quad x + \underline{5.5} \quad y \\
44 \quad y = \underline{5.5} \quad x + \underline{5.5} \quad y \\
44 \quad y = \underline{5.5} \quad x + \underline{5.5} \quad y \\
38.5 \quad y = \underline{5.5} \quad x$$

$$y = \frac{5.5}{38.5} x \rightarrow y = \frac{1}{7} x$$
 $x = \frac{38.5}{5.5} y \rightarrow x = 7 y$

 $L=x+y = length \ of \ pole's \ shadow$ $y = length \ of \ man's \ shadow$

Method 1

38.5 y =5.5 x
$$\frac{d}{dt} (38.5 \text{ y} =5.5 \text{ x})$$

$$38.5 \frac{dy}{dt} = 5.5 \frac{dx}{dt}$$

38.5
$$\frac{dy}{dt}$$
 =5.5 (8)

38.5
$$\frac{dy}{dt}$$
 =44.

$$\frac{dy}{dt} = 44./38.5$$

$$=\frac{8}{7}\frac{ft}{\text{sec}}$$

$$\approx 1.143 \frac{ft}{\text{sec}}$$

A street light is mounted at the top of a 44 ft tall pole. A man 5.5 ft tall walks away from the pole with a speed of 8 ft/sec along a straight path.

3. How fast is the LENGTH of HIS shadow changing when he is 30 ft from the pole?

$$\frac{44}{5.5} = \frac{x+y}{y} \qquad 44 \quad y = \underline{5.5} \quad (x+y) \\
44 \quad y = \underline{5.5} \quad x + \underline{5.5} \quad y \\
44 \quad y = \underline{5.5} \quad x + \underline{5.5} \quad y \\
44 \quad y = \underline{5.5} \quad x + \underline{5.5} \quad y \\
38.5 \quad y = \underline{5.5} \quad x$$

$$y = \frac{5.5}{38.5} x \rightarrow y = \frac{1}{7} x$$
 $x = \frac{38.5}{5.5} y \rightarrow x = 7 y$

 $L=x+y = length \ of \ pole's \ shadow$

 $y = length \ of \ man's \ shadow$

$$y = \frac{1}{7}x$$

$$\frac{d}{dt}(y = \frac{1}{7}x)$$

$$\frac{dy}{dt} = \frac{1}{7}\frac{dx}{dt}$$

$$\frac{dy}{dt} = \frac{1}{7}(8)$$

$$\frac{dy}{dt} = \frac{8}{7}\frac{ft}{\sec}$$

$$\approx 1.143\frac{ft}{\sec}$$

Problem 2

◆ A	В	С	D
=			
¹ pole	40		
² man	5	5.	
3 man's walking rate	-9		
4 man's shadow	у		
5 pole's shadow	x+y		
6 distance from pole	12		
7	unnecessary info		
C			<u> </u>

A street light is mounted at the top of a 40 ft tall pole. A man 5 ft tall walks towards the pole with a speed of 9 ft/sec along a straight path.

4. How fast is the TIP of his shadow moving when he is 12 ft from the pole?

$$\frac{40}{5} = \frac{x+y}{y}$$

40
$$y = 5.$$
 $(x+y)$

$$40 y = 5. x + 5. y$$

$$40 y - 5$$
, $y = 5$, x

35.
$$y = 5$$
. x

$$y = \frac{5.}{35.} x \rightarrow y = \frac{1}{7} x$$
 $x = \frac{35.}{5.} y \rightarrow x = 7 y$

$$x = \frac{35.}{5.} y \rightarrow x = 7 y$$

 $L=x+y=length\ of\ pole's\ shadow$

 $y = length \ of \ man's \ shadow$

There are a variety of routes to the answer for the question of how fast is the tip of the shadow moving and how fast the man's shadow is changing its length.

I will show four of these methods

A street light is mounted at the top of a $40\,\mathrm{ft}$ tall pole. A man $5\,\mathrm{ft}$ tall walks towards the pole with a speed of $9\,\mathrm{ft/sec}$ along a straight path.

4. How fast is the TIP of his shadow moving when he is 12 ft from the pole?

$$\frac{40}{5.} = \frac{x+y}{y}$$

$$\frac{40}{40} = \frac{5.}{x+y}$$

$$40 = \frac{5.}{x} = \frac{x+y}{5.}$$

$$40 = \frac{5.}{x} = \frac{x+y}{5.}$$

$$40 = \frac{5.}{x} = \frac{x+y}{5.}$$

$$40 = \frac{5.}{x} = \frac{5.}{x}$$

$$35. \quad y = \frac{5.}{x}$$

$$y = \frac{5.}{35.} x \rightarrow y = \frac{1}{7} x$$
 $x = \frac{35.}{5.} y \rightarrow x = 7 y$

 $L=x+y = length \ of \ pole's \ shadow$ $y = length \ of \ man's \ shadow$ Method 1

$$y = \frac{1}{7} \times \& L = x + y \rightarrow L = x + \frac{1}{7} \times \longrightarrow L = \frac{8}{7} \times X$$

$$\frac{d}{dt} \left(L = \frac{8}{7} \times X\right)$$

$$\frac{dL}{dt} = \frac{8}{7} \frac{dx}{dt}$$

$$= \left(\frac{8}{7}\right) - 9$$

$$= \frac{-72}{7} \frac{ft}{\text{sec}}$$

$$= -10.2857 \frac{ft}{\text{sec}}$$

A street light is mounted at the top of a 40 ft tall pole. A man 5 ft tall walks towards the pole with a speed of 9 ft/sec along a straight path.

4. How fast is the TIP of his shadow moving when he is 12 ft from the pole?

$$\frac{40}{5.} = \frac{x+y}{y} \qquad 40 \quad y = \underline{5.} \quad (x+y) \\
40 \quad y = \underline{5.} \quad x + \underline{5.} \quad y \\
40 \quad y = \underline{5.} \quad x + \underline{5.} \quad y \\
40 \quad y = \underline{5.} \quad x + \underline{5.} \quad y \\
35. \quad y = \underline{5.} \quad x$$

$$y = \frac{5.}{35.} x \rightarrow y = \frac{1}{7} x$$
 $x = \frac{35.}{5.} y \rightarrow x = 7 y$

 $L=x+y = length \ of \ pole's \ shadow$

 $y = length \ of \ man's \ shadow$

35.
$$y = 5. x$$

$$\frac{d}{dt} (35. y = 5. x)$$
35.
$$\frac{dy}{dt} = 5. \frac{dx}{dt}$$
35.
$$\frac{dy}{dt} = 1. \cdot man(-9)$$
35.
$$\frac{dy}{dt} = -45.$$

$$\frac{dy}{dt} = -45. /35. = \frac{-9}{7} \frac{ft}{sec} \approx -1.286 \frac{ft}{sec}$$

$$\frac{d}{dt} (L = x + y) \rightarrow \frac{dL}{dt} = \frac{dx}{dt} + \frac{dy}{dt}$$

$$= -9 + \frac{-9}{7} = \frac{-72}{7} \frac{ft}{sec}$$

$$\approx -10.2957 \frac{ft}{sec}$$

sec

A street light is mounted at the top of a 40 ft tall pole. A man 5 ft tall walks towards the pole with a speed of 9 ft/sec along a straight path.

4. How fast is the TIP of his shadow moving when he is 12 ft from the pole?

$$\frac{40}{5.} = \frac{x+y}{y} \qquad 40 \quad y = \underline{5.} \quad (x+y) \\
40 \quad y = \underline{5.} \quad x + \underline{5.} \quad y \\
40 \quad y = \underline{5.} \quad x + \underline{5.} \quad y \\
40 \quad y = \underline{5.} \quad x + \underline{5.} \quad y \\
35. \quad y = \underline{5.} \quad x$$

$$y = \frac{5.}{35.} x \rightarrow y = \frac{1}{7} x$$
 $x = \frac{35.}{5.} y \rightarrow x = 7 y$

 $L=x+y = length \ of \ pole's \ shadow$

 $y = length \ of \ man's \ shadow$

$$y = \frac{1}{7} \times \frac{d}{dt} (y = \frac{1}{7} \times) \rightarrow \frac{dy}{dt} = \frac{1}{7} \frac{dx}{dt}$$

$$\frac{dy}{dt} = \frac{1}{7} (-9) = \frac{-9}{7} \frac{ft}{\sec} \approx -1.286 \frac{ft}{\sec}$$

$$L = x + y & x = 7 y \rightarrow L = 7 y + y = 8 y$$

$$\frac{d}{dt} (L = 8 y)$$

$$\frac{dL}{dt} = 8 \frac{dy}{dt}$$

$$= (8) \frac{-9}{7}$$

$$= \frac{-72}{7} \frac{ft}{\sec}$$

$$= -10.2857 \frac{ft}{\sec}$$