\qquad

Given $\vec{a}=\left[\begin{array}{c}-2 \\ 8\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}6 \\ 10\end{array}\right]$
Perform the following vector operations

1. State the direction of this vector in all three forms if we are travelling from P to Q

$$
[]=<\quad, \quad>=\ldots \quad \mathrm{i}+\ldots \ldots \mathrm{j}
$$

2. State the exact magnitude of this vector
3. State the unit vector related to this vector $P Q$
4. $2 a+7 b$

Vector is said to parallel to another
7. $|3 a-4 b|$
vector if it is a scalar multiple of another vector

$$
\vec{c}=\left[\begin{array}{c}
-20 \\
30
\end{array}\right] \text { is parallel to } \vec{h}=\left[\begin{array}{c}
-2 \\
3
\end{array}\right]
$$

8. Write a vector that is parallel to vector a-b that travels in the OPPOSITE direction, that is a third as long
9. Determine the directional angle of this vector

The angle formed with the positive x axis and a vector drawn with same direction drawn from the origin is approximately \qquad -
9. Write the unit vector related to $2 a+7 b$

A resultant vector is the result of a set of operations on a vector
Let $\vec{d}=\frac{-5}{4} a+\frac{7}{10} b$
10. Write \vec{d} in unit vector form (hint: a vector in unit vector form does not have to have length 1 , but a unit vector does!)

16. Find the dot product between vectors a and c
19. Find the smallest angle formed by the vectors a and c
20. Find the smallest angle formed by the vectors b and c
21. Explain the difference between a directional angle and angle formed by two vectors Be specific and use pictures to support your explanation

Parallel and Perpendicular Vectors
$a=\left[\begin{array}{l}2 \\ 3\end{array}\right] \quad b=\left[\begin{array}{c}2 \\ -3\end{array}\right] \quad c=\left[\begin{array}{c}-2 \\ 3\end{array}\right] \quad \mathrm{d}=\left[\begin{array}{c}-3 \\ 2\end{array}\right] \quad e=\left[\begin{array}{l}0.2 \\ 0.3\end{array}\right] \quad f=\left[\begin{array}{c}-20 \\ -30\end{array}\right] \quad g=\left[\begin{array}{c}-0.5 \\ -0.75\end{array}\right]$
22. How do you determine if a vector is parallel to another vector (many of you need to realize that COLLINEAR is ALSO PARALLEL)?
23. How do you determine if a vector perpendicular to another vector? Gee I wish there was a fast and easy check to see if two vectors are perpendicular.....man if only someone would come up with a rule for this
24. Referring to the direction vectors above answer the following questions
a. Which vectors are parallel (or collinear) to $a=\left[\begin{array}{l}2 \\ 3\end{array}\right]$?
b. Which vectors are perpendicular to $a=\left[\begin{array}{l}2 \\ 3\end{array}\right]$?
c. Which vectors travel in the opposite direction as $a=\left[\begin{array}{l}2 \\ 3\end{array}\right]$?
25. Find the value of each of the variables
a. $\quad h=\left[\begin{array}{l}5 \\ y\end{array}\right]$ find y if the vector h is parallel (or collinear) to $a=\left[\begin{array}{l}2 \\ 3\end{array}\right]$
b. $\quad m=\left[\begin{array}{l}w \\ 8\end{array}\right]$ find w if vector m is perpendicular to $a=\left[\begin{array}{l}2 \\ 3\end{array}\right]$

Given that $a=\left[\begin{array}{l}2 \\ 3\end{array}\right] \mathrm{b}=\langle-1,3\rangle$ and $\mathrm{c}=-4 \mathrm{i}-1 \mathrm{j}$
29. Draw $d=a+b$

30. Draw e $=a-c$

This is a vector polygon
It can be represented by a particular vector equation

We can say that vector PQ is the vector equation
26. Vector $\mathrm{PQ}=$
(use lower case letters)

Given that
$a=\left[\begin{array}{l}2 \\ 3\end{array}\right] \mathrm{b}=\langle-1,3\rangle$ and $\mathrm{c}=-4 \mathrm{i}-1 \mathrm{j}$
27. Draw the vector polygon
$-2 a+3 b-2 c$

DON'T FORGET TO CLOSE THE VECTOR POLYGON

If we call the resultant vector RW
28. What is the direction vector associated with RW?
31. $\operatorname{Draw} f=-b-c$

